
Advances in Dynamical Systems and Applications.

ISSN 0973-5321, Volume 17, Number 2 (2022) pp. 599-614

© Research India Publications

https://www.ripublication.com/adsa.htm

Rust-like Programming Language for Low-resource

Microcontrollers

Fernando Martinez Santa1 , Santiago Orjuela Rivera2

and Fredy H. Martinez Sarmiento1

1Universidad Distrital Francisco José de Caldas, Facultad Tecnológica,
Bogotá D.C, Colombia.

2Corporación Unificada Nacional de educación superior CUN,
Escuela de Ingeniería, Bogotá D.C, Colombia.

Abstract

This article proposes a programming structure for low-resource
microcontrollers over the name of Sokae Project, this is inspired by
Arduino and Micropython projects and pretends to work as a medium
point between both programming structures taking the best features of
each kind of languages and programming structures. The project’s name
is inspired by the crab pet of Rust programming language. Sokae means
crab in Emberá Chamí language, so the project’s name is a tribute to
Emberá native people. The programming structure is composed of three
main components: a language based on Rust syntax, a transpiler that
turns the defined Rust- like language into C, and a generic Application
Programming Interface API. The main goal of this project is to obtain a
cross- platform programming structure for programming low-resource
microcontrollers over the same language and API. Sokae language is a
small subset of Rust programming language following its overall syntax.
On the other hand, the transpiler from Sokae language to C is
implemented by using Python and the SLY module as lexer and parser.
Likewise, the API is written for the native C compiler for each
microcontroller, so it is necessary to use it as a part of the project. Several
application examples are tested in order to check the correct working of
the overall programming structure, just over the XC16 compiler for
PIC24/dsPIC33 microcontroller family. Finally, after several tests, the
proposed programming structure shows that it is possible to use modern
language structure to program any kind of microcontroller no matteríts
limited resources.
Keywords: Programming Language, Rust, Transpiler, Microcontroller,
Embedded Systems, Compiled Language, Microcontroller API

600 Fernando Martinez Santa et al

1. INTRODUCTION
Microcontroller programming has always been specialized and dependent on each
microprocessor architecture. First, when these were programmed by using
assembly language, the pro- grammer had to learn the complete specific
instruction set of the processor, so changing to another architecture was too
complicated and took a long time. When the high level program- ming languages
were introduced in the microcontrollers world, the development and debugging
times were reduced signifi- cantly, but features such setup registers, peripherals
and others, keep depends on a certain processor’s architecture knowledge by the
programmer [1], [2]. Trying to generate a cross-platform programming tool some
projects have been born [3], including several virtual machine implementations
[4] such as JavaScript [5]. One of the most popular projects is Arduino, which
consists of a C language compiler (with some additions) plus an API, which makes
it easy to program the microcontrollers over a specific hardware platform.
Arduino was designed to be used by people with minimal or null electronics
knowledge [6], however, a lot of different industrial and academic applications
have been developed using it [7]. Other projects such as Micropython, implements
a subset of Python language able to run an interpreterón microcontrollers with
certain memory requirements. Nowadays, Micropython has been ported to a lot
of different architectures [8] and has been used in a lot of different applications,
mainly in Internet of Things IOT. Finally, Tinygo project, implement a version of
Go language able to run on microcontrollers. Tinygo offers a modern syntax and
featured language, and the advantage of being compiled [9]. All of these projects
implement complete programming structures for programming microcontrollers
with ease, but most of the time sacrificing memory room and execution time. Most
of the small or low-resource microcontrollers are out of the scope of those
projects, basically due to the amount of memory available. In order to obtain the
best level of optimization it is necessary to use the native compileróf the
microcontrollers manufacturer [10], [3], generally over C language. Therefore, a
programming structure that includes as a part the native C compiler of each
architecture, and an upper modern language layer could reach
similaróptimization levels with high level features.
A multilayer programming structure like the described needs to have a transpiler,
which compiles or translates the upper layer language to the native C [11]. Those
transpilers are very common nowadays [12], translating among compiled [13], in-
terpreted [14], [15] and virtual-machine-based [16] languages, depending on the
necessity. The aim of the transpilers is generally to reuse source code that comes
from other different languages [13], orímprove the performance of the program
changing the platform or language (for instance turn Python into Rust [14]), even
translating source code to processor-less hardware [17].
On the other hand, nowadays several new programming languages have emerged
to solve some of the common problems of the standard languages such as memory
management and safety. One of the most popular new languages is Rust, which is
an open source statically-typed programming language with a lot of modern

Rust-like Programming Language for Low-resource Microcontrollers 601

features that make the development easy. Rust is preferred specially by systems
programmers [18], so much so the new versions of Linux kernel will include Rust
along with C, due to its safety features. The popularity of Rust is spreading to the
microcontroller world too, having different applications such as IOT [19] or even
on multi-core microcontrollers [20],[21].
The programming structure proposed in this paper uses a high level language
based on Rust as the upper layer language, and a transpiler from this Rust-like to
the specific architecture native C compiler, which is finally used to generate the
programming binary file. Likewise, a cross-platform API is proposed in order to
make it easy to program across different architectures, this one is implemented
over the native C compileróf each architecture (in this case XC16 compiler). The
transpilerís proposed to be implemented by means of using free software, in this
case all of the algorithms will be implemented in the Python language using the
modules SLY.
The paperís organized as follows: Section 2 presents the methodology to
implement the overall proposed programming structure, including the Sokae
language definition (subsection 2.1), the Sokae-to-C transpiler implementation in
Python (subsection 2.2), and the first version of the API implemented for the XC16
compiler (subsection 2.3). Section 3 presents the results of implementing the
proposed programming structure by several test source codes. Finally, Section 4
shows the conclusions about this research’s main ideas, including possible future
work.

2. DESIGN and METHODOLOGY
A complete structure for programming microcontrollers using the proposed Rust-
like language (named Sokae) was designed and developed. This programming
structure includes the transpiler from Sokae language to C, the Application
Programming Interface (API) in both languages, and the native C compiler for the
specific microcontroller, as shown in Figure 1. The main goal is the user writes the
code in Sokae language over a standard API and obtains the executable or binary
file for a specific microcontroller without taking care about the inner workings of
the programming architecture. For the scope of this article, the test only were
done using the Microchip® PIC24FJ128GA010 microcontroller (on an Explorer 16
board) and the XC16 Compiler, but the programming structure is modular so it is
relatively easy to include other microcontrollers or boards.

2.1. Sokae language definition
Sokae is the name given to the proposed language. This is based on Rust
programming language, which is one of the most preferred new languages
nowadays [18], mainly for its performance and safety features [22], [23], [24]. The
name was taken from the Emberá Chamí language and means crab. This was
inspired by the crab pet of Rust programming language, and at the same time is a

602 Fernando Martinez Santa et al

tribute to Emberá people who live in the pacific coasts of Panamá, Colombia and
Ecuador.

Figure 1: Complete proposed programming structure.

Sokae is a statically typed programming language based on the Rust syntax [13],
designed to be used on low-resource microcontrollers. Just like Rust, Sokae shares
most of the syntax basis of C. Features like the final semicolon, curly braces as code
block delimiters, the main function, etc. makes Sokae easy to understand and of
course easy to translate (transpile). Table 1 shows an example code written in
Sokae and using Sokae API, which implements a blinking LED in the pin 0 of the
port B using a PIC24FJ microcontroller. Likewise, the second column of Table 1
shows the C equivalent of the same code using the same API for the XC16 compiler.
Some of the main features of Sokae language are shown in the left column of Table
1, such as:
● It is imperative to have a main function.
● All instructions end with a semicolon or curly bracket close.
● In a code block (always delimited by curly brackets), the last instruction can

omit the final semicolon.
● All function declarations start with the reserved word fn.

● The identifier names prefer to use snake case as in Rust language (like
sleep_ms() function, but this is not imperative like the pinHigh()

function, which uses camel case in this API version.

Rust-like Programming Language for Low-resource Microcontrollers 603

Table 1: Sokae main function comparing

Sokae C (XC16)

 use machine::pin;

 use

time::sleep_ms;

 fn main() {

 pin(A6,OUT);

 loop {

pinHigh(A6);

sleep_ms(500);

pinLow(A6);

sleep_ms(500)

 }

 }

 #include

"./settings.h"

 #include "./ports.h"

 #include

"./machine/pin.h"

 #include

"./time/sleep_ms.h"

 int main(void) {

 pin(A6,OUT);

 while(true) {

 pinHigh(A6);

 sleep_ms(500);

 pinLow(A6);

 sleep_ms(500);

 }

 return 0;

 }

● There are other loop instructions supported like loop, which is used for
implementing infinity loops. This is really useful in multi-tasking
applications.

● For including different modules or libraries, the reserved word use is
utilized.

● The library including instruction can use the double colon :: to include only
a specific component instead of the complete library. This is mainly
applicable to the implemented API (explained in detail in subsection 2.3).

Other Rust features has been implemented in Sokae such as:
● let keyword for declaring variables.
● i8, i16, i32, i64, isize, u8, u16, u32, u64, usize and char types.
● Default type inference in declaring.
● Suffix annotation in declaring.
● Underscore in literals for improving its readability.

On the other hand, all of the variables in Sokae are mutable by default unlike Rust,
in which all variables are immutable by default. For that reason, mut Rust's
keyword is not implemented in Sokae. This difference was implemented thinking

604 Fernando Martinez Santa et al

of being compatible with most of the native C microcontroller’s compilers, and
therefore for being easier to transpile. The rest of Sokae features will be explained
by examples in the Sokae to C transpiler subsection.

2.2. Sokae to C Transpiler
By definition, a transpiler differs from a compiler in that the transpiler translates
source code between programming languages with the same abstraction levels. In
this case a transpiler from Sokae to C was implemented, being Sokae based on Rust
and thus with the same abstraction level of C. The Transpiler from Sokae language
to C was implemented using Python programming language and the PLY module
as lexer and parser analysers for the input language. First, in the lexer analyzer, all
of the tokens of Sokae language are defined, such as keywords, operands and other
punctuation symbols, as shown in the source code extract of List 1.

List 1: Sokae lexer implemented in Python and SLY (extract)

 tokens = { MODULUS,IDENTIFIER,

 KW_LET, KW_STATIC, KW_FN, KW_RETURN,

 …

 I8, I16, I32, I64, U8, U16, U32, U64,

 … }

 U8 = r'u8' #Tokens

 U16 = r'u16'

 U32 = r'u32'

 …

 literals = {',', ';', ':', '(', ')', '{', '}', … }

 ignore = ' \t'

 ignore_comment = r'//.*' #Comments

 …

Once the Lexer reduces the character flux to an easier-to-analyze token flux, the
parser implements all of the syntactic rules of Sokae language. The List 2 shows an
extract of the production syntactic productions implemented using SLY. The Sokae
grammar implements a subset of the syntactic production of the official Rust
grammar [25].

Rust-like Programming Language for Low-resource Microcontrollers 605

List 2: Sokae Parser implemented in Python and SLY (extract)

…

@_('KW_LET IDENTIFIER ":" Type "=" Expression ";"',

 'KW_LET IDENTIFIER "=" Expression NumericType ";"',

 'KW_LET IDENTIFIER ":" Type ";"')

def LetStatement(self, p):

 self.exType = ''

 if len(p) == 7:

 return p.Type +' ' +p.IDENTIFIER +' = '

+p.Expression +';'

 elif len(p) == 6:

 return p.NumericType +' ' +p.IDENTIFIER +' = '

+p.Expression +';'

 elif len(p) == 5:

 return p.Type + ' ' + p.IDENTIFIER + ';'

…

@_('Expression "&" "&" Expression', 'Expression "|" "|"

Expression')

def LazyBooleanExpression(self, p):

 return p[0] + ' ' + p[1] + p[2] + ' ' + p[3]

…

@_('U8', 'U16', 'U32', 'U64')

def NumericType(self, p):

 return p[0].replace('u', 'uint') + '_t'

…

In SLY each syntactic production is implemented by a function definition as shown
in List 2, where there are three different syntactic production examples:
LetStatement, LazyBooleanExpression and NumericType. SLY uses
Python’s function decorators to implement the different syntactic rules applied to
each syntactic production, for instance the production LetStatement is the
implementation of three of the four possible variable declarations in Sokae
language. That syntactic production is equivalent to the one Backus-Naur Form
(BNF) shown in List 3, where the simple variable declaration, the declaration plus
assignment and the declaration plus assignment by suffix annotation are defined.

606 Fernando Martinez Santa et al

List 3: Sokae syntactic production for variable declaration in BNF

LetStatement ::= KW_LET IDENTIFIER ":" Type "="

Expression ";"

 | KW_LET IDENTIFIER "=" Expression

NumericType ";"

 | KW_LET IDENTIFIER ":" Type ";"

The transpiler reads the source code written in Sokae and creates a second source
file code in C, with the same name of the original and different file extension as
shown in Figure 2. For compatibility with standard source code editors, Sokae uses
the .rs file extension, which is the same one of Rust language.

Figure 2: Transpiler’s input and output files.

2.3. API definition
A simple Application Programming Interface was implemented in order to make
the microcontroller’s programming process easier. The main idea is designing a
general cross-platform API implemented in Sokae language and in the specific
microcontroller native C compiler, which include the basic features of peripherals
of most microcontrollers. This proposed API includes the followings peripherals
and features:
● General purpose input/output.

○ pin type declaration
○ setting high and low
○ setting specific binary value
○ reading an input value

Rust-like Programming Language for Low-resource Microcontrollers 607

● Analog to Digital Converter (ADC).
○ ADC setting up
○ ADC reading value

● Universal Asynchronous Receiver Transmitter (UART) .
○ UART setting up
○ single byte transmitting
○ single byte receiving

● Timing features.
○ delays in microseconds
○ delays in milliseconds

The API has to be implemented for each of the supported microcontrollers or
boards following the folder structure shown in Figure 3, in order to maintain the
compatibility across all the hardware devices. In a project, this folder structure
allows to include complete modules such as machine or individual sub-modules
such as machine/pin.h, this is pretty important in low-resource
microcontrollers in order to save program memory. This last module includings
are possible in Sokae language using the syntax: use module; for complete

modules and: use module::submodule; for submodules, which will be

transpiled to #include “./module.h” and #include

“./module/submodule.h” respectively. When a complete module is include,
the ./module.h includes all of the .h files in the Module folder in the folder’s
API structure. For instance if the follow code is traspiled: use time; , the

sleep_us.h and sleep_ms.h header files are included in the transpiled .c
code.

Figure 3: Folder tree for the implemented API.

608 Fernando Martinez Santa et al

3. RESULTS
The proposed programming structure including the Sokae to C transpiler and API
definition was released as a free software project named Sokae Project in the
https://gitlab.com/fermarsan/sokae-project URL, with the proposed to be a seed
project for the embedded systems programming community.
The complete programming structure was tested by using the Microchip®
PIC24FJ128GA010 microcontroller on the Explorer 16 development board. This is
a 16-bit microcontroller with 125kB of program memory and 8kB of data RAM.
Several tests were done for most of the Sokae features. Table 2 shows the
comparison of the primitive variable declaration in Sokae and its corresponding C
transpiling for the XC16 compiler. The advantage of using the Rust-Like variable
definition is that each variable is bit-wide explicit no matter the hardware. This
also includes the usize and isize integer types which adjust to the processor’s
registers wide.

Table 2: Primitive types declaration

Sokae C (XC16)

 let var0: bool; //boolean

 let var1: i8; //integer

 let var2: i16;

 let var3: i32;

 let var4: i64;

 let var5: u8; //unsigned integer

 let var6: u16;

 let var7: u32;

 let var8: u64;

 let var9: f32; //floating point

 let var10: f64;

 let var11: char; //char

 let var12: usize; //processor's

 let var13: isize; //base integers

 bool var0;

 int8_t var1;

 int16_t var2;

 int32_t var3;

 int64_t var4;

 uint8_t var5;

 uint16_t var6;

 uint32_t var7;

 uint64_t var8;

 float var9;

 long double var10;

 char var11;

 uint16_t var12;

 int16_t var13;

Also, Table 3 shows the transpiled code for declaring and assignment instructions
in Sokae. That example shows the use of the underscore symbol “_”, which is used
for improving the readability of large numbers. Likewise, the special notation for
hexadecimal, octal and binary literals are shown, being only different to C the octal
literals which start with the “0o” (zero + o) sequence.
Another interesting Rust feature implemented in Sokae language is the suffix
annotation, with which it is possible to add a suffix to the literal value to indicate
its type. As previously shown in List 3, the syntax for the suffix annotation avoids
the use of colon “:” character and includes the assignment symbol and the
specific suffix. The suffixes use the same type keywords defined in subsection 3.1,
as shown in Table 4.

https://gitlab.com/fermarsan/sokae-project

Rust-like Programming Language for Low-resource Microcontrollers 609

Table 3: Primitive types declaration and assignment (including underscore
character)

Sokae C (XC16)

 let var0: bool = true;

 let var1: bool = false;

 let var2: i8 = 129;

 let var3: i64 = -6_835_292;

 let var4: u8 = 0b0011_0101;

 let var5: u16 = 0o073452;

 let var6: u32 = 103_937_465;

 let var7: u64 = 0xAAFF_7625;

 let var8: f32 = 1_342.56;

 let var9: f64 = -34.035_440;

 let var10: char = 'f';

 bool var0 = true;

 bool var1 = false;

 int8_t var2 = 129;

 int64_t var3 = -6835292;

 uint8_t var4 = 0b00110101;

 uint16_t var5 = 0073452;

 uint32_t var6 = 103937465;

 uint64_t var7 = 0xAAFF7625;

 float var8 = 1342.56;

 long double var9 = -34.035440;

 char var10 = 'f';

Table 4: Primitive types declaration and assignment with suffix annotation

Sokae C (XC16)

 let var2 = 129i8;

 let var3 = -6_835_292i64;

 let var4 = 0b0011_0101u8;

 let var5 = 0o073452u16;

 let var6 = 103_937_465u32;

 let var7 = 0xAAFF_7625u64;

 let var8 = 1_342.56f32;

 let var9 = -34.035_440f64;

 let var10 = -45isize;

 let var11 = 9731usize;

 int8_t var2 = 129;

 int64_t var3 = -6835292;

 uint8_t var4 = 0b00110101;

 uint16_t var5 = 0073452;

 uint32_t var6 = 103937465;

 uint64_t var7 = 0xAAFF7625;

 float var8 = 1342.56;

 long double var9 = -34.035440;

 int16_t var10 = -45;

 uint16_t var11 = 9731;

One of the most useful features of modern languages like Rust is the type inference,
which can simplify the programming process in most cases. Type inference makes
the programmer unworried about variable types when not necessary, and then
makes the development time shorter. The type inference is also implemented in
Sokae by using default types for integer and floating points variables. In the case
of the XC16 compiler, the uint16_t and float type were defined as the default
type for the inference. Table 5 shows the equivalent transpiled code for different
variable declarations by using inference, including boolean, integer, floating point
and character literals.

610 Fernando Martinez Santa et al

Table 5: Primitive types declaration by inference

Sokae C (XC16)

 let var0 = true;

 let var1 = false;

 let var2 = 1345;

 let var3 = 71.4;

 let var4 = -457;

 let var5 = -10.445;

 let var6 = 'd';

 bool var0 = true;

 bool var1 = false;

 int16_t var2 = 1345;

 float var3 = 71.4;

 int16_t var4 = -457;

 float var5 = -10.445;

 char var6 = 'd';

On the other hand, Sokae gives support for some of the loop instructions of Rust,
such as: regular while loop, infinity loop, and regular for loop. Table 6 shows

the transpiler results for the supported loop instructions in Sokae. The for loop

includes the integer range notation using the syntaxes: i..f and i..=f, being
i the initial value and f the final value.

Table 6: Supported loops

Sokae C (XC16)

 while a < 10 {

 a += 1

 }

 while(a < 10){

 a += 1;

 }

 loop {

 a += 1

 }

 while(true){

 a += 1;

 }

 for i in 0..10 {

 arr[i] = 0

 }

 for(int i=0, i<10, i++){

 arr[i] = 0;

 }

 for i in 0..=9 {

 arr[i] = 0

 }

 for(int i=0, i<=9, i++) {

 arr[i] = 0;

 }

4. CONCLUSIONS
The proposed programming structure allows the microcontroller programmer to
use a modern high level programming language, with the advantage of being
compiled but with some modern features. Sokae language pretends to be a high
level programming language for microcontroller, that uses modern Rust-based
features like type inference but at the same time obtaining binary files with similar
optimization levels of standard compiled languages like C.

Rust-like Programming Language for Low-resource Microcontrollers 611

The amount of memory necessary to run a program written in an interpreted
language such as Micropython or Javascript on microcontrollers, limits the range
of these in which it is possible to do it. Sokae language along with the proposed
programming structure could allow programming any microcontroller which has
a native C compiler, taking advantage of its modern features. At the same time,
Sokae could reach almost the same execution times of C language.
The transpiling process between Sokae and C is successful due to both languages
are very similar. As all variables are mutable by default in Sokae, that language is
closer to C even than Rust which is its inspiration.
Like Arduino, mbed and Micropython among others, Sokae language and
programming structure could allow people with minimal electronics knowledge
to program easily embedded systems. Likewise, Sokae could allow experienced
embedded systems programmers to program a wide range of them learning only
one language and API.
This programming proposal is perfectly functional as was demonstrated by tests
done, even without implementing most of the modern features of Rust, which
means that this project can significantly improve implementing more of them.
By using the proposed API implementation, it is possible to use Sokae and this
programming structure in the classroom in basic courses of microcontrollers and
embedded systems. The learning curve of Rust and therefore Sokae is not that fast,
this fact gives the opportunity to use as base another simpler language to improve
the general learning curve of the proposed programming structure, maintaining
the same API. Two language candidates are the V programming language and
Peregrine language; the first one is inspired mainly by Rust and the second one by
Python.
As future work, the implementation of other Rust useful features is proposed. For
instance, the array definition, the direct array indexing using the for loop,
variable shadowing among others. Likewise, it is imperative to give support to
other microcontrollers especially the ones with low program and data memory,
which this project could show their advantages.
Finally, implementing PC-based graphical user interfaces directly in Rust for
applications in Sokae could be advantageous, due to both languages sharing the
same base, making it easy to develop complete applications like SCADA or other
control and GUI applications.

5. ACKNOWLEDGEMENT
This work was supported by Universidad Distrital Francisco José de Caldas and
Corporación Unificada Nacional de Educación Superior CUN. The views expressed
in this paper are not necessarily endorsed by Universidad Distrital or CUN. The
authors thank ARMOS and IDECUN research groups for the simulations and tests
done.

612 Fernando Martinez Santa et al

REFERENCES

[1] A. Radovici and I. Culic, Embedded Systems Software Development.
Berkeley, CA: Apress, 2022, pp. 27–47.

[2] E. Kusmenko, B. Rumpe, S. Schneiders, and M. von Wenckstern, “Highly-
optimizing and multi-target compiler for embedded system models: C++
compiler toolchain for the component and connector language
embeddedmontiarc,” in Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 447–457. [Online]. Available:
https://doi.org/10.1145/3239372.3239388

[3] A. K. Rachioti, D. E. Bolanakis, and E. Glavas, “Teaching strategies for the
development of adaptable (compiler, vendor/processoríndependent)
embedded c code,” in 2016 15th International Conference on Informa- tion
Technology Based Higher Education and Training (ITHET), 2016, pp. 1–7.

[4] K. Zandberg and E. Baccelli, “Minimal virtual machines on iot mi-
crocontrollers: The case of berkeley packet filters with rbpf,” in 2020 9th
IFIP International Conference on Performance Evaluation and Modeling in
Wireless Networks (PEMWN). IEEE, 2020, pp. 1–6.

[5] K. Grunert, “Overview of javascript engines for resource-constrained
microcontrollers,” in 2020 5th International Conference on Smart and
Sustainable Technologies (SpliTech), 2020, pp. 1–7.

[6] D. E. Bolanakis, “A survey of research in microcontroller education,” IEEE
Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 14, no. 2, pp.
50–57, 2019.

[7] S.-M. Kim, Y. Choi, and J. Suh, “Applications of the open-source hardware
arduino platform in the mining industry: A review,” Applied Sciences, vol.
10, no. 14, p. 5018, 2020.

[8] V. M. Ionescu and F. M. Enescu, “Investigating the performance of
micropython and c on esp32 and stm32 microcontrollers,” in 2020 IEEE
26th International Symposium for Design and Technology in Electronic
Packaging (SIITME), 2020, pp. 234–237.

[9] A. Suarez Ruiz, “Disen o de hardware y firmware para un sistema
inal ́ambrico de adquisición de datos daq de bajo costo,” Departamento de
Ingenierí́a El ́ectrica, Electrónica y Computación, 2019.

[10] H. Wu, C. Chen, and K. Weng, “An energy-efficient strategy for
microcontrollers,” Applied Sciences, vol. 11, no. 6, p. 2581, 2021.

[11] A. M. Karpi ́nski, “Automatic translation of programs source codes from
python to c# programming language,” Ph.D. dissertation, Zakład Sztucznej
Inteligencji i Metod Obliczeniowych, 2022.

[12] M. Szafraniec, B. Roziere, H. Leather, F. Charton, P. Labatut, and G.
Synnaeve, “Code translation with compiler representations,” 2022.
[Online]. Available: https://arxiv.org/abs/2207.03578

Rust-like Programming Language for Low-resource Microcontrollers 613

[13] M. Ling, Y. Yu, H. Wu, Y. Wang, J. R. Cordy, and A. E. Hassan, “In rust we trust
– a transpiler from unsafe c to safer rust,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), 2022, pp. 354–355.

[14] H. Lunnikivi, K. Jylkk ̈a, and T. H ̈am ̈al ̈ainen, “Transpiling python to rust for
ptimized performance,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation, A. Orailoglu, M. Jung, and M. Reichenbach, Eds.
Cham: Springerínternational Publishing, 2020, pp. 127–138.

[15] M. Marcelino and A. M. Leit ao, “Extending PyJL - Transpiling Python
Libraries to Julia,” in 11th Symposium on Languages, Applications and
Technologies (SLATE 2022), ser. Open Access Series in Informatics
(OASIcs), J. a. Cordeiro, M. J. a. Pereira, N. F. Rodrigues, and S. a. Pais, Eds.,
vol. 104. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
f ̈urí́nformatik, 2022, pp. 6:1–6:14. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2022/16752

[16] B. F. Andr ́es and M. P ́erez, “Transpiler-based architecture for multi-
platform web applications,” in 2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM), 2017, pp. 1–6.

[17] K. Takano, T. Oda, and M. Kohata, “Approach of a coding conventions for
warning and suggestion in transpiler for rust convert to rtl,” in 2020 IEEE
9th Global Conference on Consumer Electronics (GCCE), 2020, pp. 789–
790.

[18] W. Bugden and A. Alahmar, “Rust: The programming language for safety
and performance,” arXiv preprint arXiv:2206.05503, 2022.

[19] T. Uzlu and E. S ̧ aykol, “On utilizing rust programming language forí́nternet
of things,” in 2017 9th International Conference on Compu- tational
Intelligence and Communication Networks (CICN), 2017, pp. 93–96.

[20] K. I. Vishnunaryan and G. Banda, “Harsark multi rs: A hard real- time kernel
for multi-core microcontrollers in rust language,” in Smart Intelligent
Computing and Applications, Volume 2, S. C. Satapathy, V. Bhateja, M. N.
Favorskaya, and T. Adilakshmi, Eds. Singapore: Springer Nature Singapore,
2022, pp. 21–32.

[21] J. Aparicio Rivera, “Real time rust on multi-core microcontrollers,” Master’s
thesis, Lule ̊a University of Technology, Computer Science, 2020.

[22] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Understanding memory and
thread safety practices and issues in real-world rust programs,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 763–779.

[23] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek, “Benefits and
drawbacks of adopting a secure programming language: rust as a case
study,” in Seventeenth Symposium on Usable Privacy and Security (SOUPS
2021), 2021, pp. 597–616.

614 Fernando Martinez Santa et al

[24] N. Lagaillardie, R. Neykova, and N. Yoshida, “Implementing multiparty
session types in rust,” in International Conference on Coordination
Languages and Models. Springer, 2020, pp. 127–136.

[25] Rust programming language development community. (2022 September
2). “The Rust Reference” [Online]. Available: https://doc.rust-
lang.org/reference/introduction.html.

