Mostrar el registro sencillo del ítem
Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
dc.contributor.author | Gomez Casseres, Andrés Felipe | |
dc.date.accessioned | 2023-09-28T21:07:00Z | |
dc.date.available | 2023-09-28T21:07:00Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | APA | spa |
dc.identifier.uri | https://repositorio.cun.edu.co/handle/cun/4358 | |
dc.description.abstract | In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage. | eng |
dc.format.extent | 5 Paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.subject.ddc | Física - Electricidad y electrónica | spa |
dc.title | Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications | eng |
dc.type | Artículo de revista | spa |
dcterms.audience | Estudiantes, docentes, investigadores, comunidad académica. | eng |
dc.contributor.researchgroup | IDECUN | spa |
dc.description.researcharea | Ingeniería y Tecnología -- Ingenierías Eléctrica, Electrónica e Informática -- Ingeniería Eléctrica y Electrónica | spa |
dc.relation.references | K. Tashiro, “Possibility of magnetic energy harvesting for zero-power sensor,” IEEJ Transactions on Fundamentals and Materials, vol. 137, no. 8, pp. 442–447, 2017. | spa |
dc.relation.references | G. Venkatesh, “Semiconductor solutions for the internet of things: The role of event detection, asynchronous design, energy harvesting and flexible electronics,” Journal of the Indian Institute of Science, vol. 93, no. 3, pp. 441–461, 2013. | spa |
dc.relation.references | A. Sanchez Ramirez, K. Das, R. Loendersloot, T. Tinga, and P. Havinga, “Wireless sensor network for helicopter rotor blade vibration monitoring: Requirements definition and technological aspects,” Key Engineering Materials, vol. 569, pp. 775–782, 2013. (Online). Available: http://doc.utwente.nl/87397/. | spa |
dc.relation.references | J. A. Bowden, S. G. Burrow, A. Cammarano, L. R. Clare, and P. D. Mitcheson, “Switched-Mode Load Impedance Synthesis to Parametrically Tune Electromagnetic Vibration Energy Harvesters,” IEEE-ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 603–610, 2015. | spa |
dc.relation.references | A. R. M. Siddique, S. Mahmud, and B. Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms,” Energy Conversion and Management, vol. 106, pp. 728–747, 2015. | spa |
dc.relation.references | S. P. Beeby, L. Wang, D. Zhu, A. S. Weddell, G. V. Merrett, B. Stark, G. Szarka, and B. M. Al-Hashimi, “A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data,” Smart Materials and Structures, vol. 22, no. 7, p. 075022, 2013. | spa |
dc.relation.references | S. G. Burrow and L. Penrose, “A 2 DOF vibration harvester for broadband and multifrequency harvesting using a single electro-magnetic transducer,” Journal of Physics: Conference Series, vol. 557, no. 1, p. 12031, 2014. | spa |
dc.relation.references | A. Cammarano, S. G. Burrow, D. A. W. Barton, A. Carrella, and L. R. Clare, “Tuning a resonant energy harvester using a generalized electrical load,” Smart Materials and Structures, vol. 19, no. 5, may 2010. | spa |
dc.relation.references | S. Saggini, S. Giro, F. Ongaro, and P. Mattavelli, “Implementation of reactive and resistive load matching for optimal energy harvesting from piezoelectric generators,” 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6, 2010. | spa |
dc.relation.references | G. D. Szarka, B. H. Stark, and S. G. Burrow, “Review of Power Conditioning for Kinetic Energy Harvesting Systems,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 803–815, feb 2012. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.subject.proposal | Average current control | eng |
dc.subject.proposal | boost converte | eng |
dc.subject.proposal | Electrical tuning | eng |
dc.subject.proposal | Energy harvesting. | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
BC. Artículos [172]