Mostrar el registro sencillo del ítem

dc.contributor.authorGomez Casseres, Andrés Felipe
dc.date.accessioned2023-09-28T21:07:00Z
dc.date.available2023-09-28T21:07:00Z
dc.date.issued2018
dc.identifier.citationAPAspa
dc.identifier.urihttps://repositorio.cun.edu.co/handle/cun/4358
dc.description.abstractIn this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.eng
dc.format.extent5 Paginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.subject.ddcFísica - Electricidad y electrónicaspa
dc.titleBatteryless DCM Boost Converter for Kinetic Energy Harvesting Applicationseng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, docentes, investigadores, comunidad académica.eng
dc.contributor.researchgroupIDECUNspa
dc.description.researchareaIngeniería y Tecnología -- Ingenierías Eléctrica, Electrónica e Informática -- Ingeniería Eléctrica y Electrónicaspa
dc.relation.referencesK. Tashiro, “Possibility of magnetic energy harvesting for zero-power sensor,” IEEJ Transactions on Fundamentals and Materials, vol. 137, no. 8, pp. 442–447, 2017.spa
dc.relation.referencesG. Venkatesh, “Semiconductor solutions for the internet of things: The role of event detection, asynchronous design, energy harvesting and flexible electronics,” Journal of the Indian Institute of Science, vol. 93, no. 3, pp. 441–461, 2013.spa
dc.relation.referencesA. Sanchez Ramirez, K. Das, R. Loendersloot, T. Tinga, and P. Havinga, “Wireless sensor network for helicopter rotor blade vibration monitoring: Requirements definition and technological aspects,” Key Engineering Materials, vol. 569, pp. 775–782, 2013. (Online). Available: http://doc.utwente.nl/87397/.spa
dc.relation.referencesJ. A. Bowden, S. G. Burrow, A. Cammarano, L. R. Clare, and P. D. Mitcheson, “Switched-Mode Load Impedance Synthesis to Parametrically Tune Electromagnetic Vibration Energy Harvesters,” IEEE-ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 603–610, 2015.spa
dc.relation.referencesA. R. M. Siddique, S. Mahmud, and B. Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms,” Energy Conversion and Management, vol. 106, pp. 728–747, 2015.spa
dc.relation.referencesS. P. Beeby, L. Wang, D. Zhu, A. S. Weddell, G. V. Merrett, B. Stark, G. Szarka, and B. M. Al-Hashimi, “A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data,” Smart Materials and Structures, vol. 22, no. 7, p. 075022, 2013.spa
dc.relation.referencesS. G. Burrow and L. Penrose, “A 2 DOF vibration harvester for broadband and multifrequency harvesting using a single electro-magnetic transducer,” Journal of Physics: Conference Series, vol. 557, no. 1, p. 12031, 2014.spa
dc.relation.referencesA. Cammarano, S. G. Burrow, D. A. W. Barton, A. Carrella, and L. R. Clare, “Tuning a resonant energy harvester using a generalized electrical load,” Smart Materials and Structures, vol. 19, no. 5, may 2010.spa
dc.relation.referencesS. Saggini, S. Giro, F. Ongaro, and P. Mattavelli, “Implementation of reactive and resistive load matching for optimal energy harvesting from piezoelectric generators,” 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6, 2010.spa
dc.relation.referencesG. D. Szarka, B. H. Stark, and S. G. Burrow, “Review of Power Conditioning for Kinetic Energy Harvesting Systems,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 803–815, feb 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalAverage current controleng
dc.subject.proposalboost converteeng
dc.subject.proposalElectrical tuningeng
dc.subject.proposalEnergy harvesting.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem